If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7^2+25^2=c^2
We move all terms to the left:
7^2+25^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+674=0
a = -1; b = 0; c = +674;
Δ = b2-4ac
Δ = 02-4·(-1)·674
Δ = 2696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2696}=\sqrt{4*674}=\sqrt{4}*\sqrt{674}=2\sqrt{674}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{674}}{2*-1}=\frac{0-2\sqrt{674}}{-2} =-\frac{2\sqrt{674}}{-2} =-\frac{\sqrt{674}}{-1} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{674}}{2*-1}=\frac{0+2\sqrt{674}}{-2} =\frac{2\sqrt{674}}{-2} =\frac{\sqrt{674}}{-1} $
| 5.6^2+10.6^2=c^2 | | 7.2^2+9.6^2=c^2 | | f/31=-13 | | 4x=-28 | | 941=w+336 | | h-17=55 | | 6x-√64=2x+12 | | 2x+12=9x-15 | | (12-m)(9+0.75m)(m-12)=0 | | 2x+6=5x–3(x–2) | | 100=n+1 | | 1/2(8a-22)=2(a+a) | | 18=f+15 | | 4=w-1/2=w+1 | | 1/2(8a-22)=2(a+8) | | 50x-3=15x+3 | | 55=x(x+11) | | u-9.67=6.4 | | 3=h-4 | | 15x+5=88 | | 5x+3+15x+5=180 | | 61+x=1500 | | 9^6x=3^2x+4 | | y(y+60=0 | | x^2+64-16x+x^2-34=0 | | 52x^2+x=10 | | x²+64-16x+x²-34=0 | | (8x+17)=180 | | 6(w+4)^{2}+2=20 | | 4/25x=2/5 | | x+5.3=37.1 | | 7x2(2x)=56 |